Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4.
نویسندگان
چکیده
Newly synthesized histone H4 is deposited in a diacetylated isoform in a wide variety of organisms. In Tetrahymena a specific pair of residues, lysines 4 and 11, have been shown to undergo this modification in vivo. In this report, we demonstrate that the analogous residues, lysines 5 and 12, are acetylated in Drosophila and HeLa H4. These data strongly suggest that deposition-related acetylation sites in H4 have been highly, perhaps absolutely, conserved. In Tetrahymena and Drosophila newly synthesized histone H3 is also deposited in several modified forms. Using pulse-labeled H3 we have determined that, like H4, a specific, but distinct, subset of lysines is acetylated in these organisms. In Tetrahymena, lysines 9 and 14 are highly preferred sites of acetylation in new H3 while in Drosophila, lysines 14 and 23 are strongly preferred. No evidence has been obtained for acetylation of newly synthesized H3 in HeLa cells. Thus, although the pattern and sites of deposition-related acetylation appear to be highly conserved in H4, the same does not appear to be the case for histone H3.
منابع مشابه
A single histone acetyltransferase from Tetrahymena macronuclei catalyzes deposition-related acetylation of free histones and transcription-related acetylation of nucleosomal histones
A salt-extracted histone acetyltransferase activity from Tetrahymena macronuclei acetylates mostly histone H3 and H4 when free histones are used as substrate. Free histone H4 is acetylated first at position 11 (monoacetylated) or positions 11 and 4 (diacetylated). This activity strongly resembles in vivo, deposition-related acetylation of newly synthesized histones. When acetylase-free mononucl...
متن کاملHistones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells.
The organization and acetylation of nascent histones prior to their stable incorporation into chromatin were examined. Through sedimentation and immunoprecipitation analyses of HeLa cytosolic extracts, two somatic non-nucleosomal histone complexes were detected: one containing nascent H3 and H4, and a second containing H2A (and probably H2B) in association with the nonhistone protein NAP-1. The...
متن کاملNucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase
BACKGROUND In eukaryotic cells, newly synthesized histone H4 is acetylated at lysines 5 and 12, a transient modification erased by deacetylases shortly after deposition of histones into chromosomes. Genetic studies in Saccharomyces cerevisiae revealed that acetylation of newly synthesized histones H3 and H4 is likely to be important for maintaining cell viability; the precise biochemical functi...
متن کاملPP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4
Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential...
متن کاملAcetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly
Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 4 شماره
صفحات -
تاریخ انتشار 1995